—
©
fa
N
—
{
Qe

A StorageSyétem for Scalable Knowledge Representation

" Technical Note No. 547

~ August 23, 1994

By: - PeterD. Karp, Sr. Cemputer Scientist
Suzanne M. Paley, Computer Scientist
- Artificial Intelligence Center

Ira Greenberg, Computer Scientist
- Computer Science Laboratory

Computing and Englneenng Sciences Division

To appear in CIKM 94 (Conference on Informatson and Knowledge Management), Ganhersburg.
- Maryland, 1994, . :

This work was supported by ARPA Contract No. F30602-92-C-0115, and by Grant No. H29 LM-
05413-01A1 from the Natlonal Instltutes of Health. ‘

333 Ravenswood Avenus » tMenlo Park, CA 94025-3493 = (415) 326-6200 s FAX: {415) 328-5512 » Telex: 334486 - '




Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
23 AUG 1994 2. REPORT TYPE 00-08-1994 to 00-08-1994
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Storage System for Scalable Knowledge Representation £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 10
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



A Storage System for Scalable Knowledge Representation

Peter D. Karp, Suzanne M. Paley, Ira Greenberg™
Artificial Intelligence Center and *Computer Science Laboratory
SRI International
333 Ravenswood Ave.

Menlo Park, CA 94025
voice: 415-859-6375
fax: 415-859-3735
pkarp@ai.sri.com

Abstract

Twenty yvears of Al research in knowledge representa-
tion has produced frame knowledge representation systems
(FRSs) that incorporate a number of impcriant advances.
However, FRSs lack two important capabilities that prevent
them from scaling up to realistic applications: they cannot
provide high-speed access to large knowledge bases (KBs),
and they do not support shared, concurrent KB access by
multiple users. Our research investigates the hypothesis that
one can employ an existing database management system
(DBMS) as a storage subsystem for an FRS, to provide
high-speed access to large, shared KBs. We describe the
design and implententation of a general storage system that
incrementally loads referenced frames from a DBMS, and
saves modified frames back to the DBMS, for two different
FRSs: LooM and THEO. We also present experimental re-
sults showing that the performnance of our prototype storage
subsystem exceeds that of flat files for simulated applications
that reference or update up to one third of the frames from
a large Loowm KB.

To appear in CIKM-94 (Conference on Information and
Knowledge Management), Gaithersburg MD, 1994.

1 Introduction

Twenty years of Al research in knowledge representation has
produced frame knowledge representation systems (FRSs)
that incorporate a number of important advances {6, 4].
FRSs provide inference capabilities such as production rules
and classification to derive the deductive consequences of ex-
plicit information. Defeasible inheritance allows regularities
(defaults) to be encoded and overridden for many objects
with minimal effort. And run-time schema alteration capa-
bilities support the evolution of complex knowledge bases
(KBs). :

However, FRSs lack two important capabilities that pre-
vent them from scaling up to realistic applications: they
cannot provide high-speed access to large KBs, and they do
not support shared, concurrent KB access by multiple users.
All existing FRSs process their I{Bs in data structures that
exist entirely in virtual memory, forcing users to read the
whole KB into memory {rom disk before its use. To provide
persistence, KBs are written to disk files in their entirety.
Saving or loading a B can therefore become an expensive
operation, taking time proportional to the size of the KB.
An effective cap is placed on the size of 2 KB by the amount
of time that users are willing to wait for save and load op-
erations, with an absolute cap based on the size of virtual
memory.

A more favorable arrangement would be one in which
load time and memory usage are proportional to the num-
ber of frames referenced, and save time is proportional to the
number of frames updated. This is the behavior supported
by conventional database systems, which also offer other
important storage management facilities, including trans-
actions, error recovery, and concurrent access. We combire
the information management capabilities of {rame represen-
tation systems with the storage management capabilities of
conventional database systems to form 2 single intelligent,
persistent, and scalable information management system,

Our research investigates the hypothesis that we can em-
ploy an existing database management system {DBMS) as
a storage subsystem for an FRS, to provide high-speed ac-
cess to large, shared KKBs. This paper discusses the de-
sign requirements that we identified for this storage sub-
system, presents alternative storage-subsystem architectures
that satisfy those requirements, and gives performance mea-
surements {rom our prototype implementation.

Qur prototype storage subsystem utilizes a cornmercial
refational DBMS {RDBMS). To gain a fuller understanding

of the issues involved in developing a storage system for an
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Figure 1: A characterization by McKay et al. of alternative
strategies for coupling an Al system such as an FRS with 2
database system.

FRS, we have integrated this storage subsystemn with two
FRSs: THEO [11] and Loow {5, 8]. LooM is in the KL-ONE
family of FRSs, whereas THEO is in the RLL family; differ-
ences in the philosophies and implementations of THEO and
LooM affect their exact requirements for a storage subsys-
tem.

2 Storage Subsystem Architecture

Mcl{ay et al. describe four broad alternative architectures
for coupling Al systems (FRSs)} with database systems (see
Figure 1} [10]. Our primary goal is to provide a storage sys-
tem for an FRS with minimal disruption to the end user of
the FRS. We therefore chose strategy (a) in Figure 1, namely
to submerge 2 DBMS within an FRS such that the presence
of the DBMS is invisible to the end user. For example, the
user need not have any knowledge of the DBMS schema,
nor must he establish a mapping between the schemas in
the DBMS and the FRS. The Intelligent Database Interface
(IDI) system developed by McKay et al. uses strategy (d)
because their main objective is to import information from
an existing DBMS into a knowledge representation system.

Once a general architecture is selected, several more choices

must be made, such as, what type of DBMS is best suited
to the role of a frame storage system? Because the answer
to this question is not apparent, we are experimenting with
a commercial relational DBMS, and an extensible storage
management system called EX0oDUS from the University of
Wisconsin [3]. This paper presents performance results for
the relational DBMS.

Another decision concerns the manner in which FRS in-
formation is organized in the DBMS. One of our goals is
that the user should not have to design a DBMS schema
for every new KB. Instead, we as designers of the storage
system must create a generic DBMS schema that accom-
modates all potential FRS information. In fact, more than
one such generic schema exists, and we plan to evaluate the
performance of several schemas empirically.

Another series of choices concerns the granularity at which

information is transferred between the DBMS and the FRS.
Our goals are for KB loading to take time proportional to
the amount of information the application actually refer-
ences; {B saving should take time proportional to the num-
ber of {rames updated in the KB. The simiplest mechanism
that satisfies these constraints is to transfer a single frame
from the DBMS to the FRS when the user application refer-
ences a frame that is not currently in virtual memory. This
demand-loading approach is analogous to the use of page
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faulting in operating systems. Our current implementation
uses this approach, but we are also studying alternatives
such as transferring only a piece of 2 referenced frame (e.g.,
a single slot), or transferring a cluster of related {rames (e.g.,
a referenced frame plus all frames that it references).

In our current implementation, all modified fraines are
transferred from the FRS to the DBMS when the user per-
forms a KB-save operation.

3 Storage Subsystem Implementation

The storage subsystem transmits ASCII encodings of LooM
and THEO {rames between the DBMS, and the FRS. We
first provide an overview of the frame structures that LooM
and THEOQ employ. We then discuss the architecture of the
storage subsystem, and modifications we made to LOOM and
THEO to interface them to the storage subsystem.

3.1

A LooOM KB contains three types of frames: concepts, in-
stances, and relations (we have simplified the description
of LooM for expository purposes). A concept consists of
a2 name and a definition. The concept definition is a set
of necessary and sufficient conditions that an instance must
meet in order to be an instance of the concept. The defini-
tion is a list of zero or more super-concepts, constraints on
slot values, predicates, and other types of constraints and
characteristics. Given this information, the LOOM classifier
arranges all concepts into a subsumption (generalization)
hierarchy.

A LooM relation {not to be confused with the usual
database definition of a relation as a table} is a KB-wide
definition of the properties of a slot. We can define a do-
main and a range for a relation. The domain indicates all
concepts whose instances can have values for the relation,
and the range limits the types of objects that can serve as
values.

Instances have one or more parent concepts and some
set of slot (attribute} values. Based on these characteris-
tics, the LooM classifier can infer the concepts to which
the instance belongs. For example, if Person is a primitive
concept that is in the domain of the relations Sex and Age,
and if a Female-person is a Person with Sex=Female, and a
Girl is a Person with Sex=Female and Age<18, then LooM
will correctly infer that Girl belongs below Female-person
in the concept hierarchy. If Sally is an instance of Person
with Sex=Female and Age=17, then LooM will correctly
infer that Sally is an instance of Girl. If Sally has a birth-
day and her age changes to 18, then LooM will revise that
classification automatically.

Most commonly, LoOM performs two types of inferences:
in backward-chaining mode values are computed ouly when
requested, and in forward-chaining mode the consequences
of an assertion are computed as soon as the assertion is
made, All our tests and experiments have used LOOM's
backwatd-chaining mode. We believe our system would also
work with the forward-chaining mode. However, in order to
make the required inferences, creation or modification of a
single frame could trigger a large number of frame faults by
LooM’s classifier, which could hurt performance. We have
not attempted to support LoOM’s production-rule inference.

LOOM Structures and Operation



3.2 THEOQ Structures and Operation

Because THEOC is also an FRS, it shares many characteristics
with LooM, THEO fraines are also arranged in a generaliza-
tion hierarchy, and THEO {rames consist ol slots that con-
tain values. However, THEO classes do not have associated
definitions, and THEO does not compute the classification
operation. Given the basic structural similarity of LooM
and THEOQ, it is natural to develop a storage system that
can setve both systems.

For simplicity the remainder of the paper usually men-
tions LoOM ouly. All statements we make about the inter-
action of LooMM with our storage system also apply to THEO
except where we state otherwise.

3.3 Relational Schema

The relational DBMS schema we employ to store LooM KBs
consists ol five relational tables. An example is shown in
Figure 2.

The Frames table contains frame definitions. A frame
definition is a string of text that provides LooM with all
the information necessary to create the frame. We place
concept and instance definitions together in the same ta-
ble, because there are occasions when a frame is referenced
without its type being known — the type field then iden-
tifies the frame as a concept or instance. Most definitions
will be relatively short, but some may be quite long. For
this reason, a sequence number is included, in case a def-
inition exceeds the DBMS maximum column size and has
to be split into multiple tuples. We record the number of
parents of each frame to enable the storage subsystem to
perform certain optimizations. A KB identifier is included
in each table, to enable multiple KBs to be stored in one
DBMS. The KB Mapping table associates a KB name with
its unique identifier.

The tables Supers and Instance Classes enable recon-
struction of the concept and instance hierarchy outside of
Loom. The former lists the super-sub relationships between
concepts; the latter documents the relationship between in-
stances and their parent concepts. Separate indices are built
to retrieve the subconcepts of a concept, the superconcepts
of a concept, the instances of a concept, and the parent con-
cepts of an instance. This information is necessary for two
reasons. First, in order for a concept or instance to be de-
fined in LoOnt, all parent concepts must already be loaded,
or Loow will not be able to classifly the new frame. Thus, we
must be able to determine the concepts from which a given
concept or instance inherits. Second, the definition does
not contain information about subconcepts or instances of
a concept, so we must provide that information to Loom
directly, outside the normal channels.

3.4 Frame Faulting

A frame fault occurs when an application {or LOOM itsell)
references a [rame F that is not in virtual memory. Exam-
ples ol [rame references include retrieving or altering slot
values ol F, and requesting a lisL of the parents ol F. When
[anlting a frame into tmemory, we retrieve its definition {rom
the DBMS by issuing one or more SQL queries.1 This ap-
proach allows multiple users to access and to update the

}%We call on the IDI from Paramax to communicate with the
RDBMS server from LISP using SQL queries that can be transported
over a network. We are not employing the full power of the IDI; we
utilize only the module of the IDI that formulates and unpacks SQL
queries.

same KB from the RDBMS server in a distributed (but
uncoordinated) fashion. Qur Muture work will investigate
tetho«s of controlling multiple updates to a shared KB.

We then call standard LooM functions to add the frame
to its Loom KB. This process is complicated by the fact
that most frames are related {connected) to other frames in
the KB. For example, a concept is related to its supercon-
cepts, subconcepts, and instances. An instance will contain
references to its parent concepts. In addition, an instance
may contain references to other instances serving as fillers
of the instance’s slots. LOOM normally expects all of these
other f{rames to be present in memory. When faulting a
[ramme into memory, we also give LOOM just enough of the
context required to process the faulted frame.

The process of faulting F into memory involves three
steps: processing the parents of F, informing LOOM of the
definition of F, and processing connections from F to {rames
other than its parents.

Connections to parent frames We treat connections
to parent frames differently than connections to subcon-
cepts, instances, and slot-value relerences. The RDBMS
tables Supers and Instance Classes record the direct parents
of every [rame (as inferred by LOOM by classification before
the KB was last saved). When processing a fault to frame F,
we first generate faults to every direct parent of ' that is not
currently in virtual memory (faults to the parents of these
parents may then be generated recursively). Therefore, all
parents ol F are loaded before F is defined.

Connections to other frames LOOM implements all
frame references as LisP pointers to the actual LooM data
structures for the frames in question. In the RDBMS defini-
tion of the [rame, these references are symbolic frame names.
Normally, when LOOM processes a [rame definition it inter-
nally converts the names to pointers to the actual objects.
However, consider the situation where a slot of F' references
a frame G, and G has not yet been loaded from the RDBMS.
There would be no LOOM data structure to which F could
point. Although we could now fault in G, we wish to avoid
loading a frame just because we need to point to it, because
for some KBs this strategy could recursively fault in the
entire I{B. Instead, we create a stub for G — a dummy ob-
ject with a name but containing no information — to serve
as a place-holder for . LOOM can store and pass around
pointers to a stub just as it would a pointer to any frame.
A pointer to G is then manually inserted into the appro-
priate slot of F. A future attempt to retrieve information
(other than the name) {rom, or to write information to a
stub, causes a trap to the storage subsystem, and the actual
frame is then faulted in. LOoOM inferencing is not affected
by the presence of stubs, as any attempt to reason using a
stub will result in a ftame fault. This mechanism is analo-
gous to the swizzling cperation performed in object-oriented
database management systems (OODBMSs), which convert
an object ID into a pointer [7]. Object IDs are typically
numbers; symbolic [rame names in LOOM are analogous to
object [Ds. ‘

This topic is one of the more significant differences be-
tween LooOM and THEO. In THEO, connections from one
{rame to another are implemented as [rame names that are
LisP symbols, rather than as pointers to a frame data struc-
ture (2 CLOS object) as in LOoOM. LISP symbols are of
course implemented as pointers, but these pointers point
to the LISP symbol table where all symbols are interned.
The THEO frame definition is stored on the property list of
the symbol. We can consider LISP symbol luterning to be a
stub mechanism of sorts, because entries in this symbol ta~
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KBID | Name Defn Kind Seq# | Parents KB ID | Name Defn
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KB Mapping Supers Instance Classes
KB Class Instance Class
Name KB ID KB ID | Name Super KBID | Name Name
Forces 1 1 Armmy | Armed-Forces 1 Sth-Brigade | Army
Supplies 2 1 Army | Ground-Unit

Figure 2: The relational schema used to store LOOM KBs in an RDBMS, with sample data.

ble provide a place to which symbolic frame references can
point. Therefore, no stub frames need to be created for the
THEC storage subsystem.

Defining the frame The storage system retrieves the
definition of F' from the Frames table of the RDBMS, and
invokes LOOM procedures to define F' based on the retrieved
definition string. If a stub definition already existed for
F because of a connection from a previously faulted frame
to F, the stub object is directly converted to a LOOM ob-
ject (LooM is written using CLOS, which allows this class-
conversion operation). This approach maintains the validity
of all previously existing pointers to the stub.

Modifications to LooM We made several modifica-
tions to LOOM to implement demand loading of frames. (1)
Normally, when LOOM converts an identifier to an object
pointer, it checks a collection of hash tables to find the ob-
ject. We changed LOOM so that if the hash table lookup
fails, a frame fault is triggered in most cases. (2) No frame
fault is triggered, however, if a flag is set to indicate that
we are already in the process of fanlting in a frame. In that
case, the implementation finds or creates a stub for the ob-
ject, and returns a pointer to the stub. The frame-creation
routines of LoOM have been altered to check for a stub for
an object belore creating a new object: if the stub already
exists, it is directly converted to the new object. (3) Before
processing any instance or query, LOOM normally performs
a series of operations on all concepts that have been defined
or inodified since the last instance or query was processed, to
ensure that the concept hierarchy is properly formed. This
sealing process involves following all superconcept and sub-
concept links. However, in the context of the storage sub-
system, lollowing subconcept links would cause many addi-
tional concepts to be faulted into memory, even though they
have not been referenced. We have altered LooM to follow
links only to subconcepts already in memory.

Modifications to THEO THEO wassimpler to modify
because stubs are not needed for THEO, and because THEO
perforins no sealing of class (concept) frames. The only
changs necessary was to the THEO (rame lookup procedure:
if THEO does not find that a referenced frame is defined on
the expected property-list entry, a frame fault is triggered.

4

4 Experimental Methods

To evaluate the storage subsystem, we want to test how it
performs on a variety of KBs of different types. Ideally, we
would have a series of {Bs, each differing from the others
in a single aspect, so as to be able to pinpoint how different
factors affect performance. Unfortunately, finding a set of
real KBs that show such systematic differences 1s virtually
impossible. For this reason, we have developed a parameter-
ized random KB generator (RI{BG) and concomitant tools,
to generate KBs according to input specifications (but with
meaningless data). By altering one parameter at a time,
we can conduct controlled experiments with interpretable
results.

Our random KB suite consists of three tools. The KB
generator creates LOOM and THEC [{Bs with storage char-
acteristics that the user defines. A simulated KB application
generates accesses and updates to the {rames of randomly
generated I(Bs. Finally, the KB measurer examines real
I{Bs toc determine their particular storage characteristics, so
that we have a realistic set of parameters to feed into the
RKBG. All three tools have been implemented and tested.
The KBs used in our timing experiments were all generated

by the RKBG.

4.1 The Random KB Generator

Many attributes of a KB can affect its storage character-
istics. Input paraineters to the RIKBG allow the user to
determine many of these attributes. We wanted to keep the
generator simple, yet flexible enough to generate nonhomo-
geneous, realistic-looking I{Bs. For example, in our imple-
mentation, different slots can take different datatypes for
their fillers; the constraints generated for a slot will depend
on its datatype, just as would be observed in real I{Bs. We
wanted to provide enough input parameters to enable users
to create a rich and varied assortment of KBs, shile con-
centrating primarily on parameters we believed to be most
relevant to the storage subsystem and its interactions with
LooM. For example, the average string length affects the
size of a frame, and therefore the amount of data that needs
to be retrieved during a frame fault, so we believed it was
a valuable parameter to include, whereas the range of in-
teger values used as slot fllers has little effect on storage



processing, so we fixed it arbitrarily.

The parameters to the RKBG include such properties
as number of concepts and instances, average number of
slots per frame and fiilers per slot, proportions of various
datatypes for slot-fillers, maximum depth of the concept hi-
erarchy, etc. In these respects, we can make our random
KBs very similar to real IXBs, and the parameters for our
base random KB are in fact based on the measurements of
a real Loom KB. The shape of the concept hierarchy and
the distribution of instances amoug concepts is entirely ran-
dom, however, so these aspects of our generated KBs do not
necessarily resemble actual [{Bs.

4.2 The Experiments

The goal of the experiments discussed herein was to mea-
sure storage system performance as a function of knowledge
base size. We therefore chose to keep all RWBG parame-
ters constant except for the number of iustances in the KB.
Each KB had 100 concepts, all primitive, with just one super
each. Instances averaged 3 slots apiece, with an average of
2 fillers per slot. Half the slots were filled by integers, with
the other half filled by symbols. These parameters were
chosen because they approximate the characteristics of the
transportation-planning KB that is driving our work with
LooM[12], as measured by our KB measurer. The same
random seed was used to create every KB, so the concept
hierarchy remained the same, regardless of the number of
instances. KKnowledge bases were generated with 500, 1000,
2000, 4000 and 5000 instances. Tor comparison, the same
set of I{Bs were generated and saved to native LooM Hat
files, to native THEO flat files, and to the RDBMS (both
LooM and THEO versions). These four variations of four
KBs form the basis for our experiments.

Experiments were run using LOoOM 2.1, and the February
1993 version of THEOQ, running on Lucid Common Lisp 4.1.1.
Both the FRS and the RDBMS server were running on the
same workstation, a SPARCstation 10 model 41 with 64 MB
of physical memory. LISP was restarted before every trial, to
avoid caching effects, and a garbage collection was executed
immediately before timing. Each trial was repeated three
times, and the results averaged. Overall elapsed times were
measured using the LISP time function. Measuring the time
spent in LooM, THEOQ, IDI, and the storage subsystem was
done by monitoring key procedures using the CMU moni-
toring package. The CPU time spent in the RDBMS server
process was measured using the UNIX ps utility to observe
total CPU time before and after each experiment.

A few experiments were also run with the FRS and the
RDBMS running on different machines connected by a net-
work. These results are not shown, but they were quite
similar to the results from running both on the same ma-
chine. In general, there was more variance in the results
when running on two machines, but the best times in that
configuration were roughly the same as the times on a single
machine. On a single machine, our elapsed times tend to be
very close to the sum of the CPU tiimes for each component,
indicating that system overhead (e.g. [rom virtual memory
swapping) was not a major [actor.

The first set of experiments measured the timne required
to reference some number of randomly chosen instances from
KBs of different sizes. Each reference faults in at least one
frame from the RDBMS (when the parent classes of an in-
stance are not memory resident, they are also faulted in).

Selected results for LooM and THEO are shown in Fig-
ure 3. Each of the dashed lines in these graphs shows the

time required to reference N instances in KBs of different
sizes. For example, the highest line in each graph shows the
time required to reference 2000 instances from K Bs contain-
ing a total of 2000, 4000, and 5000 instances. Figure 3(a)
shows that for THEO, the time required to reflerence 500 in-
stances from a KB containing 4000 total instances is about
the same as the time required to load that KB in its entirety
from the flat files.

A second set of measurernents breaks down the total time
spent processing frame faults into several components: the
time spent in the RDBMS server, the IDI, our storage sys-
tem, and the FRS (LooM and THEG). Figure 4 plots these
component times as a function of the number of instances
referenced for a fixed KB of 5000 instances. Figure 4(b)
shows how the total time for referencing N instances breaks
down into time spent in LOOM, our storage subsystem (555),
IDI, the RDBMS, and other processing {presumably 1/0).
Pigure 4(a) shows an analogous breakdown for THEO.

The third experiment measured the time required to
save updates to some number of randomly chosen instances
from KBs of various sizes. To be consistent with tradi-
tional LooM behavior, updates are not written as they oc-
cur. Rather, we wait untid the user issues a command to
save updates, and then all are written at once in a single
transaction, We varied the number of frames updated be-
tween 10 and 1000. Selected results are shown in Figure 5.
For comparison, we have included the time Lo save KBs of
varying sizes to LooM flat files (the time is constant for a
given KB regardless of the number of frames updated in that
KB). KB save times for THEO are similar, and thus are not
shown.

5 Discussion

Qur primary goals in performing these experiments are to

answer several questions. Does the performance of our RDBMS-

based storage subsystem meet the goal of linear time as a
function of number of frames referenced and number of up-
dates stored? If so, is its speed fast enough to make the
storage system usable in practice? And how do the different
components of the storage subsystem such as the RDBMS
server contribute to its overall performance?

Figure 4 demonstrates that our architecture achieves the
linearity goal: the time spent loading frames is a linear func-
tion of the number of frames referenced.

Figure 3 lets us evaluate the relative merits of loading
frames from the RDBMS versus from flat files. The rela-
tive merit differs for LooM versus for THEC because LooM
takes significantly longer to load an entire KB of N frames
than does THEO. The difference is that LOOM is performing
computations (classification) on the KB that THEO is not.
Because the same amouunt of data is translerred for each FRS
during incremental Ioading of N concepts from the same KB,
the database costs are about the same. Therefore the ratio
of database costs to total costs is higher for THEO than for
LooM. Tor THEO, loading N instances from the DBMS is §
times slower than loading an entire KB of N instances from a
flat file. But for LooM, loading N instances [rom the DBMS
is only 3 times slower than loading a I{B of that size from a
flat file. Therefore the performance of the RDBMS storage
subsystem is on par with a flat file when a user references up
to 12% of the frames in 2 KB in a given session for THEO;
for LOOM the user can reference up to 30% of the frames for
equivalent performance. We take tlis result to mean that
even for THEQ the performance of the storage subsystem
is acceptable in practice given our assumption that as KB



200
Loading whole KB from file
130 Reﬁ:'r'vnci;g 3000 insances
li:fe_r_enc;;g lﬂ'é.O“i.ns\mces
160 Refercncing 500 Instances
RcF‘.'n:ncing 100 instances
140 R_;fe_r-enc-ing 38 insances
L e e S PP L S
e
E100
=
L [ e
— W T
e na B T
60
40
20 ——
et ]
1000 2080 3000 4000 5000
KB size (¥ innances)
(3} THEO

200

130

Referencing 1000 instances

1507 Referencing 500 instances v
Referencing 100 instanecs /

Refcrcncing‘gﬁ-innumes.

Z—- ----- |
PRy

=
£ o ——
2
£
80
60
40
Bt s = e -y
- et &
20

1000 000 3000 4000 5000
KB sizc (# instances)

{b) LOOM

Figure 3: The solid lire in each graph shows the time required to load entire I{Bs of varving sizes from flat files for THEO
(2} and LOOM (b). The dashed lines show times required to fault in frames from the RDBMS due to references to instances
by the application. Each dashed line shows the same number of instance references as a function of KB size. All times refer
to total elapsed times. The veriical ordering of dashed lines in each graph and in its legend are the same.

size grows, users will reference only a fraction of its frames
in a given session. Note that RDBMS loading also has a
different response-time profile than does flat-file loading —
flat-file loading regquires a loug wait at startup time, whereas
demand loading hides loading waits across many operations.

Figure 3 shows that RDBMS frame loading time depends
on KB size when a fixed number of instances are referenced.
Because the parents of any referenced instances are faulted
in along with the instances, a likely explanation is that the
time to load classes depends on the size of the KXB. When
a class is faunlted in, the names of all its instances must be
retrieved {rom the database. Because all of our experimen-
tal KBs contain the same number of classes, the number
of instances per class increases in proportion to KB size, re-
quiring a greater amount of data to be retrieved per class for
large KBs. We have no data yet on how the class:instance
ratio depends on KB size for real KBs.

Figure 5(a) dernonstrates that, as expected, our architec-
ture achieves the goal of saving (B changes in.time linear in
the number of updates. Figure 5{(b) shows that the time to
save [rames is not dependent on the size of the KB, Saving
N unpdated [rames to the RDBMS is roughly 5 times slower
than saving an entire KB of & [rames to a flat file. There-
{ore, cur storage subsystem is faster than the flat file when
less than 20% of the KB has been altered.

6 Related Work on FRS Storage Systems

KEEconnection couples the KEE FRS with a relational DBMS
(1] and the IDI couples Loou with a relational DBMS [10]. -

They are examples of architectures (¢} and {(d) in Figure 1,1in
which the DBMS and FRS are loosely coupled peers. The
advantage of these architectures is to allow existing infor-
mation from a database to be imported into an Al envi-
ronment. The drawback is that this architecture does not
transparently enhance the storage capabilities of LOOM as
does our approach. Users of KEEcounection (and of the
IDI) must define a mapping between a class frame and a ta-
ble in the RDBMS; IKEEconnection creates frame instances
from analogously structured tuples stored in the RDBMS,
and can store instance frames out to the DBMS. But note
that only slot values in instance frames can be transferred to
the database — class frames are not, so this information is
not persistently stored using database techniques and can-
not be accessed by multiple users. Qur approach allows all
information in 2 Loom KB to be permanently stored in the

DBMS.

Groups at IBM and at MCC have coupled FRSs to OODBMSs.

Mays et al. coupled the K.REP system to the Statice QODBMS
[9], and Ballou et al. coupled the PrROTEUS FRS to the
OrioN OODBMS [2]. The IBM effort differs from our ap-
proach in that a KB is read {rom the OODBMS in its en-
tirety when it is first relerenced by a I{-REP user, which we
believe will be unacceptably slow for large I{Bs.

Unfortunately, none of these researchers have published
experimental investigations of alternative implementation
choices, as we are doing. Without systematic experiments
it is impossible to evaluate the relative merits of the many
possible alternative architectures.



450

400 Totl Elapsed Tine
RDEMS + DI+ 555 Thea
IDI+ 558 Theo

350 385Theo

300

Time (s}
L
(=

8
=

0 1000

2000 3000 4000
Mumber of instances referenced

{8} THEQ

I | I

Tolal Elapsed Time

RDBMS +IDI + 585 + LOOM .
00 DTS TiooM 40
555+ LOOM /l
ioow ™™ 7T y
350 o

150 7 g /
) o
7] ’ o
206 "
A o /

Time (3)
*,

4
4
)
4
g
A
109 5 7
r ™
/ Pl
- -t
//;' =T

Q 1000 2000 3000 4000 5000

Mumber of instances referenced

(b) LODM

Figure 4: The total elapsed time for referencing and faulting N instances into memory from a KB of 5000 instances is separated
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storage subsystem (including stub creation), in the IDI, and in the RDBMS server. The solid line is an elapsed time, whereas

all of the broken lines show CPU times.

7 Summary and Future Work

A FRS that performs demand loading of referenced frames,
combined with incremental saving of updated frames, will
scale to large {Bs much more gracefully than an FRS that
can only load or save frames in their entirety. We pre-
sented an architecture for an FRS storage subsystem that
submerges a DBMS within the FRS in 2 manner that is
transparent to the FRS user. Our experimental results with
a prototype implementation show that this coupling per-
forins well in practice, and that its performance is linear in
the number of frames referenced or updated, as required.
Our {uture work will evaluate a number of variations on
our current architecture, such as different RDBMS schemas,
faulting multiple related [rames into memory as a unit, and
the use of other types of DBMSs, such as object-oriented
DBMS3s. Our experiments will involve several real KBs in
addition to synthetic KBs. We ate also investigating new
paradigms of controlling multiuser access to shared KBs.
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